

NTRODUCTION

- Rayleigh-Taylor (RT) instability occurs when density and pressure gradients are misaligned, *i.e.* $\nabla P \cdot \nabla \rho < 0$. The baroclinic torque $-\nabla \times (\frac{\nabla P}{\rho})$ is the source of initial vorticity
- In the current study using the Water Channel facility, an initial unstable stratification of cold and hot water streams are acted upon by gravity
- A servo controlled flapper mechanism provides precise initial perturbations at interface of the cold and hot water streams
- Stages of RT evolution with time: Linear \rightarrow Non-linear (mode coupling) \rightarrow Turbulent Motivation
- RTI is observed in many natural phenomena such as clouds, salt-water domes, astrophysical events (e.g. nebulae)
- RTI is also witnessed in several applications such as in the ICF (Inertial Confinement Fusion) and spray ignition in engines *etc*.

PLIF EXPERIMENTAL PARAMETERS

Initial conditions

Initial condition

$$\frac{a_i}{\lambda_i} = 0.1$$
$$y = \sum a_i sin(\omega_i t + \beta_{i-1})$$
$$\omega_i = \frac{2\pi U}{\lambda_i}$$

Broadband case

- A waveform similar to Olson & Jacobs (2009) RT experiment was used
- The wavelengths were rescaled to $\lambda \in [2.04-4.0]$ cm, so that they are comparable to case 1

Imaging details

- Rhodamine 6G as fluorescein
- $Sc \approx 1500, Pr \approx 7.0$
- $x \in [8.9 67.5], y \in [0 38.5],$ $z \approx 0$ cm (for all images in fig. 2)
- Times t_1^* and t_2^* correspond to x_1 and x_2 respectively (fig. 4(a))

Table 1: List of experiments								
IC mode		Case	Wavelength			Phase angle		A_t
type	Remarks	#	λ_1 (cm)	λ_2 (cm)	λ_3 (cm)	$\beta_1(^\circ)$	$\beta_2(^\circ)$	$(\times 10^{-3})$
Single	Increasing λ	1	0	-	-	-	-	1.00
		2	2	-	-	-	-	1.00
		3	4	-	-	-	-	1.03
		4	6	-	-	-	-	1.02
		5	8	-	-	-	-	1.06
Binary	Increasing β	6	8	2	-	0	-	1.07
		7	8	2	-	30	-	1.11
		8	8	2	-	45	-	1.11
		9	8	2	-	60	-	1.13
		10	8	2	-	90	-	1.12
		11	8	2	-	120	-	1.88
	Increasing λ_2	12	8	4	-	45	-	1.00
		13	8	6	-	45	-	1.06
Multi	Inc. # of modes	14	8	4	2	45	90	1.07
		14	8	4	2	45	90	1.10
		15	8	6	4	45	-	1.06
		16	8	6	5	45	-	1.11
		17	8	7	6	45	-	1.13
	18 Broadband IC							2.00

Analysis details

- Background intensity and laser plane divergence corrected. Linear attenuation of light with y at low dye concentration
- Ensemble average of 800 images used to calculate mixing width. Equivalent wavelength, λ_{eq} based on initial height

For the 66th annual meeting of APS-DFD

Pittsburgh, Pennsylvania, USA

Concentration (passive scalar)

FLOW VISUALIZATION

(a) Without flapper motion (case 1

(c) Broadband with 11 modes (case 18)

(e) $\lambda = 8cm$ (case 5)

Figure 2: Flow visualization for select cases

EFFECT OF WAKE ON A CONVECTIVE RT SETUP

- The wake interacts with RT evolution. PIV measurement indicates that the wake is highly symmetric about the splitter plate
- The peak wavenumbers in v spectrum (fig. 3(a)) correspond largely to the splitter plate thickness and spacing between the wire meshes
- The molecular mixing parameter, θ , obtained from PLIF images indicate that the effect of the wake in diffusion mixing is very small compared to that of baroclinic vorticity
- χ^* plotted along $y \approx 0$ (fig. 3(c)). Here $t = \frac{\chi}{11}$ using Taylor's hypothesis

(a) Normalized power spectra of u and v (b) Molecular mixing parameter with & without RTI (c) Scalar dissipation rate with & without RTI for wake flow only

Figure 3: Wake effect on RT mixing

ACKNOWLEDGEMENT

• Thanks to the support of DOE-NNSA SSAA program grant # DE-NA-0001786

Rayleigh-Taylor instability: An initial condition study

Sarat Kuchibhatla, Bhanesh Akula & Devesh Ranjan

Dept. of Mechanical Engineering, Texas A&M University, College Station, TX

(f) 7 modes (case 17)

NOMENCLATURE & DEFINITIONS

- Pressure
- Density
- Acceleration due to gravity
- Mean convective velocity
- Temperature
- Total mixing width, $h = h_{(f_c=0.95)} h_{(f_c=0.05)}$
- Mole fraction of fluid
- θ Molecular mixing parameter, $\theta = 1 \frac{B_0}{B_2}$,

 $B_0 = \lim_{T \to 0^+} \frac{1}{T} \left[\rho'^2 dt / (\rho_c - \rho_h)^2 \right], B_2 = f_c f_h$ B_0 Density fluctuation self-correlation

- for miscible fluids B_2 Density fluctuation self-correlation for distinct fluids
- Time, $t^* = \frac{t}{\tau}$, with time scale, $\tau = \sqrt{\frac{\lambda_{eq}}{A_{tg}}}$
- Total time of observation
- Instantaneous scalar dissipation, $\chi^* = \int_{-H/2}^{H/2} \frac{|\nabla < f_c(x,y) > |^2 > dy}{Sc} dy$
- Sc Schmidt number

Results & Discussion

RT Mixing study

Figure 4: Variation of integral mixing parameters

CONCLUSION & FUTURE WORK

- no flapper motion case.
- independence of fine-scale mixing (fig. 4(d))

• In the mode coupling regime, the growth rates are comparable with each other for different cases (fig. 4(b)). However, saturation has not been attained for many cases • The fastest growth rate is of the broadband case while the slowest corresponds to the

• Scalar dissipation rate scales as λ_{ea}^{-2} and flattens out at late-times, showing

• Simultaneous PLIF + PIV data of these cases will help study of flow characteristics such as anisotropy and saturation, and validation of computational RT codes